9th Conference on Air Quality Modeling – A&WMA AB-3 Comments on Modeling PM_{2.5} Emissions

presented by
Bob Paine, CCM, QEP
ENSR Corporation
2 Technology Park Drive
Westford, MA 01880
Bob.Paine@aecom.com

October 10, 2008

Comment Areas

- Characteristics of PM_{2.5} newest and possibly least understood criteria pollutant
- Quantifying PM_{2.5} emissions
- Current and proposed regulatory requirements
- Challenges to PM_{2.5} implementation
 - Emissions inventories direct and precursors
 - Modeling techniques guidance?
 - Background concentrations how to treat
- Looking forward

Characteristics of PM_{2.5} - A Significant Modeling Challenge

- Unlike other gaseous criteria pollutants, because PM_{2,5}...
 - Generally comprises a mixture of solid particles and liquid droplets, some condensing from vapor – source/fuel-specific
 - Is emitted directly from a source ("primary" or "direct" emissions) and also formed in the atmosphere ("secondary formation") from precursor emissions of SO₂ and NO_x
 - Contains filterable and condensable components that may be organic or inorganic

Characteristics of PM_{2.5}

Source: VISTAS BART Modeling Protocol (2006)

PM_{2.5} Emissions Measurement Techniques

- Only filterable PM has traditionally been measured, quantified, and modeled based on EPA Reference Method 5
- Existing reference methods for condensable PM have known biases and work is underway to propose more reliable methods
- EPA is well aware of limitations to existing PM_{2.5} measurement methods – sulfates can be significantly overestimated
- Uncertain emission factors exist for condensable PM – this can be a high percentage of PM_{2.5}

PM_{2.5} Regulations and Guidance

- PM₁₀ surrogate policy for compliance modeling still in effect
- Best Available Retrofit Technology implementation guidance
- PM_{2.5} NSR implementation rule
- PM_{2.5} PSD SILs, SMCs, and increments (proposed 9/21/07; final rule pending)
- PSD increment modeling procedures (proposed 6/6/07; final rule pending)

Modeling Primary vs. Secondary PM_{2.5}

- AERMOD considers primary PM_{2.5} only
- Primary PM_{2.5} provides highest <u>near-field</u> impacts
- Secondary PM_{2.5} only at large distances
- Would probably not contribute at location of highest primary impact
- Secondary PM_{2.5} could be modeled with CALPUFF
- Large SO₂ and NO_x emission reductions may lead to PM_{2.5} increment expansion – does this require an unbiased model to take modeling credit?

(AB-3) Committee

 Are we ready to compile cumulative emission inventories for 3 pollutants?

PM_{2.5} Regulations and Guidance – Unresolved Issues

- Ignore secondary PM_{2.5} modeling for short-range applications
- Include secondary PM_{2.5} modeling for long-range applications (e.g., Class I increment)?
- How to credit precursor emission reductions?
- What is the form of the 24-hour PM_{2.5} increment standard?
 - To be consistent with the NAAQS, the 24-hour increment should be the highest, 8th – highest
 - CALPUFF and AERMOD can provide that statistic

PM_{2.5} Emissions Analysis

- Emissions factors are available for certain source types from EPA's AP-42, SPECIATE, and FIRE databases
- Certain industry groups have also reviewed stack test data to develop emission factors
- EPA demonstrates possible approach in its Interim Regulatory Impact Analysis (RIA) for the Proposed National Ambient Air Quality Standards for Particulate Matter, Appendix B – Local Scale Analysis (2005)
- Any of these factors are based on stack test methods known to be unreliable and have biases

PM2.5 Emissions Case Study

Pulp and Paper Recovery Furnace

Example Modeling Challenge: Compute Total PM_{2.5} NAAQS Impact: Background + Source Impact

- Conservative approach: add peak percentile source impact to peak percentile background, unpaired in time
- Unlikely that these two components happen at the same time
- Refined approach adds <u>concurrent</u> daily background and source impact concentrations
- If daily background concentrations not available, fill in missing days from higher of two bounding

values

PM_{2.5} Background Concentrations

 PM_{2.5} ambient monitoring data typically shows that most values are well below the NAAQS standard

PM_{2.5} Time Series for Background (Blue) and Source Impact (Green)

8th highest value from unpaired addition = 37.5 μg/m³

PM_{2.5} Time Series of Concurrent Sum: Background and Source Impact

8th highest value from paired addition = $34.1 \mu g/m3$

Summary

- PM_{2.5} modeling in a regulatory context poses challenges not previously experienced for other criteria pollutants
- Emissions measurement and modeling techniques need to be resolved
- Background concentrations can be much higher than modeled concentrations
- Due to stringent standards, there is more need for refined modeling approaches
- Collaboration necessary to implement reasonable PM_{2.5} impact assessment requirements

Looking Ahead

- Unique and important issues remain unresolved for PM_{2.5} – little EPA guidance
 - PSD increments and modeling procedures
 - Role of CALPUFF (or other models) for secondary PM_{2.5} in long-range applications for both increases and decreases in SO₂ and NO_x
 - Application of local/regional background levels in a regulatory context

